

Study of the Parametric Dependence of High-k Turbulence in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Y. Ren¹ S.M. Kaye¹, E. Mazzucato¹, W.X. Wang¹, K.C. Lee², J. Kim³ 1. PPPL 2. U.C. Davis 3. POSTECH

NSTX Research Forum, December 2, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Background and Motivations

- The mechanism responsible for anomalous electron thermal transport in NSTX is unclear:
 - Electron energy transport is always anomalous.
 - Ion transport is largely neoclassical.
- Global confinement and local transport studies show:
 - Electron transport has strong dependences on Bt and collisionality (ν_e^*) but has a weaker dependence on Ip.
- Recent results from high-k scattering demonstrated the existence of electron-gyro-scale density turbulence in NSTX.
 - Driven by ETG and can be stabilized by equilibrium ExB shear.
 - Correlation with local transport not established.
- Study of the parametric dependence of high-k turbulence will:
 - Reveal the correlation between the observed high-k turbulence and local transport.
 - Identifying the operating turbulence through changing driving terms, coupled with transport analysis and gyrokinetic simulations.

Experimental Idea 1: Collisionality Dependence of High-k Turbulence

- The confinement in NSTX strongly depends on collisionality.
- Is the change of τ_E with collisionality driven by the collisionality dependence of high-k turbulence?
- Collisionality can be changed by varying Bt and Ip.
- New (lower) collisionality regime can by achieved by utilizing the newly implemented LLD.

- Measure high-k turbulence on different days with different Lithium deposition on the LLD with fixed Bt and Ip at selected radial locations.
- On selected days, measure high-k turbulence as function of ν_e^* by varying Bt and Ip.

Experimental Idea 2: Dependence of High-k Turbulence on Bt and Ip

• Transport analysis has shown differences in electron and ion transport dependences on Bt and Ip.

• ETG turbulence is shown to be unstable for the lowest Bt.

- Measure high-k turbulence at selected radial positions when changing Bt with fixed Ip and when changing Ip with fixed Bt in both low and high collisionality regimes.
- Achieve long MHD-quiescent discharges with the help of LLD.

Experimental Idea 3: Dependence of High-k Turbulence on Zeff

- ETG turbulence is very sensitive to Zeff as shown by gyrokinetic simulations.
 - Zeff has stabilizing effects on ETG turbulence.
- How to study the effects of Zeff:
 - Compare Deuterium and Helium discharges with HHFW heating.
 - Producing similar T_e and n_e profiles
 - Zeff changed for about a factor of 2

